
Accurate Online Support Vector Regression

Junshui Ma, James Theiler, and Simon Perkins

MS-D436, NIS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

{junshui, jt, s.perkins}@lanl.gov

Abstract

Conventional batch implementations of Support Vector Regression (SVR) are inefficient

when used for applications such as online learning or cross-validation, because one must

retrain from scratch every time the training set is modified. We introduce an Accurate

Online Support Vector Regression (AOSVR) algorithm which efficiently updates a

trained SVR function whenever a sample is added to or removed from the training set.

The updated SVR function is identical to the one that would be produced by a batch

algorithm. Examples are presented that compare the performance of AOSVR to a batch

algorithm in an online and in a cross-validation scenario.

 Keywords: Accurate Online Support Vector Regression; Support Vector Regression;

Online Time-series Prediction; Leave-one-out Cross-validation.

1. Introduction

Support Vector Regression (SVR) fits a continuous-valued function to data in a way

that shares many of the advantages of support vector machine (SVM) classification. Most

algorithms for SVR (Smola et al. 1998; Chang et al. 2002) require that training samples

be delivered in a single batch. For applications such as online time-series prediction or

leave-one-out cross-validation, a new model is desired each time a new sample is added

to (or removed from) the training set. Retraining from scratch for each new data point can

be very expensive. Approximate online training algorithms have previously been

proposed for SVMs (Syed et al.1999; Csato et al. 2001; Gentile 2001; Graepel et al.

2001; Herbster 2001; Li et al. 1999; Kivinen et al. 2002; Ralaivola et al. 2001). We

propose an accurate online support vector regression (AOSVR) algorithm that follows the

approach of (Cauwenberghs et al. 2001) for incremental SVM classification.

This paper is organized as follows. The formulation of the SVR problem, and the

development of the Karush-Kuhn-Tucker (KKT) conditions that its solution must satisfy,

are presented in Section 2. The incremental SVR algorithm is derived in Section 3, and a

decremental version is described in Section 4. Two applications of the AOSVR algorithm

are presented in Section 5.

2. Support Vector Regression and The Karush-Kuhn-Tucker conditions

A more detailed version of the following presentation of SVR theory can be found in

Smola et al. (1998).

Given a training setT y , where {(,), 1... }i i i= =x l N
i ∈x R , and , we construct a

linear regression function

iy ∈ R

 () ()Tf b= Φ +x W x (1)

on a feature space F. Here, W is a vector in F, and Φ maps the input x to a vector in

F. The and b in (1) are obtained by solving an optimization problem:

()x

W

*

, 1

*

*

1min ()
2

. . (())

(())

, 0, 1

l
T

i ib i
T

i
T

i i

i i

P C

s t y b

b y

i l

ξ ξ

ε iξ
ε ξ

ξ ξ

=

= + +

− Φ + ≤ +

Φ + − ≤ +

≥ =

∑W
W W

W x

W x
 (2)

The optimization criterion penalizes data points whose y-values differ from f (x) by more

than ε. The slack variables, ξ and ξ *, correspond to the size of this excess deviation for

positive and negative deviations, respectively, as shown in Figure 1.

Figure 1. The ε -insensitive loss function and the role of the slack variables ξ and ξ *

Introducing Lagrange multipliers α, α*, η and η*, we can write the corresponding

Lagrangian as:

* * *

1 1

* *

1 1
* *

1 () ()
2

(()) (

. . , , , 0

l l
T

P i i i i i i
i i

l l
T T

i i i i i i i i
i i

i i i i

L C

y b y

s t

ξ ξ η ξ η ξ

α ε ξ α ε ξ

α α η η

= =

= =

= + + − + −

+ + − Φ − − + − + Φ +

≥

∑ ∑

∑ ∑

W W

W x W x())b

This in turn leads to the dual optimization problem:

*

* * *

, 1 1 1 1

*

*

1

1min ()() () ()
2

. . 0 , 1 ,

() 0

l l l l

ij i i j j i i i i i
i j i i

i i
l

i i
i

D Q y

s t C i l

α α α α ε α α α α

α α

α α

= = = =

=

= − − + + −

≤ ≤ =

− =

∑∑ ∑ ∑

∑

α α

*−

 (3)

where . Here is a kernel function (Smola et al.

1998). Given the solution of (3), the regression function (1) can be written:

() () (,)T
ij i j i jQ K= Φ Φ =x x x x (,)i jK x x

 *

1

() () (,)
l

i i i
i

f Kα α
=

= −∑x b+x x (4)

The Lagrange formulation of (3) can be represented as:

* * *

1 1 1 1

* * * * *

1 1 1

1 ()() () ()
2

() [() ()] (

l l l l

D ij i i j j i i i i
i j i i

l l l

i i i i i i i i i i
i i i

L Q y

u C u C

α α α α ε α α α α

δ α δ α α α

*

)

i

β α α

= = = =

= = =

= − − + + −

− + + − + − + −

∑∑ ∑ ∑

∑ ∑ ∑

−
 (5)

where , , and (*)
iδ (*)

iu β are the Lagrange multipliers. Optimizing this Lagrangian leads to

the Karush-Kuhn-Tucker (KKT) conditions::

*

1

* *
*

1

(*) (*) (*)

(*) (*) (*)

() 0

()

0, 0

0, () 0

l
D

ij j j i i i
ji

l
D

ij j j i i i
ji

i i i

i i i

L Q y u

L Q y

u u C

α α ε β δ
α

α α ε β δ
α

δ δ α
α

=

=

∂ = − + − + − + =
∂
∂ = − − + + − − + =
∂

≥ =

≥ − =

∑

∑ * 0u (6)

Note that β in (6) is the same as in (1) and (4) at optimality (Chang et al. 2002). b

Define a margin function () for the iih x th sample as: ix

*

1

() () ()
l

i i i ij j j i
j

h f y Q yα α
=

≡ − = − − +∑x x b

i

. (7)

By combining (6), and (7), can be rearranged as: ()ih x

 . (8)
*

*

*

() , 0
() , 0
() ,

() , 0
() , 0
() ,

i i

i i

i

i i

i i

i i

h
h C
h C

h
h C
h C

ε α
ε α
ε α

ε α
ε α
ε α

≥ − =
 = − < <
 ≤ − =


≤ =
 = < <


≥ =

x
x
x

x
x
x

According to the KKT conditions (6), at most one of and will be nonzero, and both

are nonnegative. That is,

iα *
iα

 (9)

Therefore, we can define a coefficient difference as

* *0 0 0i i i iandα α α α> ⇒ = > ⇒ =

iθ

0

i

−
<

*
i iθ α α− (10)

and note that determines both and . iθ iα *
iα

Combining (8), (9), and (10), we can obtain:

() ,
() , 0

() 0
() , 0
() ,

i i

i i

i i

i i

i i

h C
h C

h
h C
h C

ε θ
ε θ

ε ε θ
ε θ
ε θ

> =
 = − <− ≤ ≤ =
 = − < <

≤ − =

x
x

x
x
x

. (11)

Equation (11) suggests that the samples in training set T can be classified into three

subsets.

E Set: Error Support Vectors: { | }iE i Cθ= =

S Set: Margin Support Vectors: { | 0 }iS i Cθ= < < (12)

R Set: Remaining Samples: { | 0}iR i θ= =

3. Incremental Algorithm

The incremental algorithm updates the trained SVR function whenever a new sample

 is added to the training set T. The basic idea is to gradually change the coefficient

difference corresponding to the new sample until it meets the KKT conditions,

while ensuring that the existing samples in T continue to satisfy the KKT conditions. In

this section, we first derive the relation between the change of , or , and the change

of other coefficients under the KKT conditions, and then propose a method to determine

cx

cθ cx

cθ cθ∆

the largest allowed ∆ for each step. A pseudo-code description of this algorithm is

provided in the Appendix.

cθ

c∆

=

j c

Q b

θ θ

∆ =

∆

}
sl

s

Q Q

Q Q

3.1 Derivation of the Incremental Relations

Let be a new training sample that is added to T. We initially set and then

gradually change (increase or decrease) the value of under the KKT conditions (11).

cx 0cθ =

cθ

According to (6), (7), (8), and (11), the incremental relation between ∆ , ,

and is given by:

()ih x iθ∆

b∆

 (13)
1

()
l

i i c ij j
j

h Q Qθ θ
=

∆ = + ∆ + ∆∑x b

S

From the equality condition in (3), we have

1

0
l

c i
i

θ θ
=

+∑ (14)

Combining (11), (12), (13), and (14), we obtain:

ij j ic c
j S

j S

Q where iθ θ
∈

∈

∆ + − ∆ ∈

∆ = −

∑

∑
 (15)

If we define the index of the samples in the S set as:

 (16) 1 2{ , ,S s s=

Equation (15) can be represented in matrix form as:

 (17) 1 1 1 1 1

1

0 1 1 1
1

1

ls

l ll l l s ss s s

s s s s s s c

c

s s cs s s s

b
Q

Q

θ
θ

θ

∆     
     ∆     = − ∆     
     

∆         

That is,

 (18) 1

ls

s

c

s

b
θ

θ

θ

∆ 
 ∆  = ∆ 
 
∆  

β

where

 1 1 11 1 1

1

10 1 11 1
1

1

ls

l l ll l ls s ss s s

s s s ss s c s c

s s c s cs s s s

Q QQ Q

Q QQ Q

β
β

β

−
      
      
    = = − = −     
      
            

β R  
 

ls



 (19)

Define a non-S, or N set, as . Combining (11), (12), (13),

and (18), we obtain

1 2{ , , }
nl

N E R n n n= ∪ =

 (20)

1

2

()

()

()
ln

n

n
c

n

h

h

h

θ

∆ 
 ∆  = ∆ 
 
∆  

x

x
γ

x

where,

1 1 11

2 2 1 2

1

1

1

1

ls

ls

ln l ln n

n s n sn c

n c n s n s

n c n s n s

Q QQ

Q Q Q

Q Q Q

  
  
  = +  
  
     

γ β (20b)

In special case, when S set is empty, according to (13) and (14), Equation (20) simplifies

to:

 (21)

1

2

() 1
() 1

1()
ln

n

n

n

h

h
b

h

∆   
   ∆   = ∆   
   ∆    

x

x

x

Given , we can update and b according to (18), and update

according to (20). Moreover, (11) suggests that and are constant if

the S set stays unchanged. Therefore, the results presented in this section enable us to

update all the and given . In the next section, we address the question of

how to find an appropriate .

cθ∆ ,i i Sθ ∈

cθ∆

(),ih i ∈x N

S

cx

,i i Nθ ∈ (),ih i ∈x

iθ ()ih x

∆ cθ

3.2. AOSVR Bookkeeping Procedure

Equations (18) and (20) hold only when the samples in the S set do not change.

Therefore, is chosen to be the largest value that either can maintain the S set

unchanged or lead to the termination of the incremental algorithm.

cθ∆

The first step is to determine whether the change should be positive or negative.

According to (11),

cθ∆

 (22) () (()) (())c c csign sign y f sign hθ∆ = − = −x

The next step is to determine a bound on imposed by each sample in the training

set. To simplify exposition we only consider the case , and the case ∆ can

be obtained similarly.

cθ∆

0cθ∆ > 0cθ <

For the new sample , there are two cases: cx

Case 1: () changes from to , and the new sample is added

into S set, and the algorithm terminates.

ch x ()ch ε< −x ()ch ε= −x cx

Case 2: If increase from to , the new sample is added into E set, and

the algorithm terminates.

cθ c Cθ < c Cθ = cx

For each sample in the set S, ix

Case 3: If changes from iθ 0 to i Cθ< < i Cθ = , sample changes from S set to E set;

If changes to , sample changes from S set to R set.

ix

iθ 0iθ = ix

For each sample in the set E, ix

Case 4: If changes from ()ih x ()ih ε>x to ()ih ε=x , is moved from E set to S set. ix

For each sample in the set R, ix

Case 5: If changes from ()ih x ()ih ε<x to ()ih ε=x , is moved from R set to S set. ix

The bookkeeping procedure is to trace each sample in the training set T against these

five cases, and determine the allowed ∆ for each sample according to (18) or (20). The

final is defined as the one with minimal absolute value among all the possible .

cθ

cθ∆ cθ∆

3.3. Efficiently Updating R Matrix

When the S set is not example, the matrix R that is used in (19)

 (23) 1 1 1

1

10 1 1
1

1

ls

l ls s

s s s s

s s s s

Q Q

Q Q

−
 
 
= 
 
  

R

ls




must be updated whenever the S set is changed. Following (Cauwenberghs et al. 2001)

we can efficiently update R without explicitly computing the matrix inverse. When the kth

sample
ksx in S set is removed from the S set, the new R can be obtained as follows:

 , ,
,

,

k knew

k kR
= − I

I I

R R
R R I +, where (24) [1 2 1]

sl
k k S= +I

When the new sample , or a sample x in E set or R set, is added to S set, the new R

can be updated as follows:

cx i

0
1 1

0 1
0 0 0

new T

iγ

 
     = +      
 
 

R β
R β  (25)

where β is defined as 1

1

ls

s i

s i

Q

Q

 
 
= − 
 
  

β R 
 , and iγ is defined as 1

1

1

ls

s iT
i

s i

Q

Q

γ

 
 
 =   
 
  

β

c


 when the

sample was moved from E set or R set. In contrast, when the sample x is the sample

added to S set,

ix

β is can be obtained according to (18), and iγ is the last element of

defined in (20). γ

3.4. Initialization of the Incremental Algorithm

An initial SVR solution can be obtained from a batch SVR solution, and in most cases

that is the most efficient approach. But it is sometimes convenient to use AOSVR to

produce a full solution from scratch. An efficient starting point is the two-sample

solution, which can be written analytically. Assume training set T y ,

and . The solution of (3) will be

1 1 2 2{(,), (,)}y= x x

1y y≥ 2

1 2
1

11 12

2 1

1 2

2max(0,min(,))
2()

() / 2

y yC
K K

b y y

εθ

θ θ

− −=
−

= −
= +

 (26)

4. Decremental Algorithm

The decremental (or “unlearning”) algorithm is employed when an existing sample is

removed from the training set. If a sample is in the R set, then it does not contribute to cx

the SVR solution, and removing it from the training set is trivial; no adjustments are

needed. If on the other hand, has a nonzero coefficient, then the idea is to gradually

reduce the value of the coefficient to zero, while ensuring all the other samples in training

set continue to satisfy the KKT conditions.

cx

) y−

The general algorithm is almost the same as the incremental algorithm except for a

few small adjustments:

(i) The direction of the change of is now changed to be: cθ

() (() (()c c csign sign f sign hθ∆ = =x)cx . (27)

(ii) There is no Case 1 because the removed need not satisfy KKT conditions. cx

(iii) The condition in Case 2 becomes: changing from cθ 0cθ > to . 0cθ =

5. Applications

The accurate online SVR (AOSVR) learning algorithm produces exactly the same

SVR as the conventional batch SVR learning algorithm, and can be applied in all

scenarios where batch SVR is currently employed. In this section, two particular

applications of AOSVR are used to illustrate the particular efficiency of AOSVR for

incremental learning.

In both applications, experimental results are presented to compare the efficiency of

AOSVR with that of the batch SVR. Our version of AOSVR is implemented in Matlab,

and for the batch SVR, we used LibSVM (Chang et al. 2001), which is implemented in

C++. This leads to an apples-and-oranges comparison, but we found the currently

available Matlab codes for batch SVR to be prohibitively slow. For example, although

AOSVR should be slower than batch SVR on a batch SVR problem, we found that it took

AOSVR 4.34 seconds to train a predictor for the 292-point sunspot yearly time-series,

while the Matlab SVM Toolbox (Gunn 1998) took 143.06 seconds. We expect a C++

implementation to be faster than Matlab, so the comparison with LibSVM gives batch

SVR an advantage – but despite this, we find that AOSVR outperforms batch SVR in the

online scenarios presented here.

5.1. Online Time-series Prediction

In recent years, the use of SVR for time-series prediction has attracted increased

attention (Müller et al. 1997; Fernández 1999; Tay et al. 2001). In an online scenario, one

updates a model from incoming data and at the same time makes predictions based on

that model. This arises, for instance, in market forecasting scenarios. Another potential

application is the (near) real-time prediction of electron density around a satellite in the

magnetosphere, because high charge densities can damage satellite equipment (Friedel et

al. 2002).

In time-series prediction, the prediction origin, denoted O, is the time from which the

prediction is generated. The time between the prediction origin and the predicted data

point is the prediction horizon, which for simplicity we will take as one time step.

A typical online time-series prediction scenario can be represented as follows

(Tashman 2000):

(1) Given a time series { (and prediction origin O, construct a

set of training samples, , from the segment of time series

), 1,2,3 }x t t =

,O BA

{ (), 1 }x t t O= as , where , {((), ()),O B t y t=A X 1}t B O= −

[](1) Tx t B= − + ()y t

,O BA

() ()t x tX , , and B is the embedding

dimension of the training set .

(1)x t= +

(2) Train a predictor from the training set . ,(;O BP A X)

))

,O BA

(3) Predict x O using (1+ ,ˆ(1) (; ()O Bx O P O+ = A X .

(4) When x O becomes available, update the prediction origin: O O .

Then, go to (1) and repeat the above procedure.

(1+) 1= +

Note that the training set keeps growing as O increases, so the training of the

predictor in step (2) becomes increasingly expensive. Therefore, many SVR-based time-

series predictions are implemented in a compromised way (Tay et al. 2001), with a fixed

prediction origin O. That is, after the predictor is obtained, it stays fixed, and is not

updated as new data arrives. A direct consequence of this compromise is the degrading of

the prediction performance, which is demonstrated by the experimental results listed in

Table 2.

,O BA

In contrast, an online prediction algorithm, such as AOSVR, can take advantage of

the fact that the training set is augmented one sample at a time, and the enhanced

efficiency that an online algorithm provides is shown in the next section.

5.1.1. Experiments

Two experiments were performed to compare the AOSVR algorithm with the batch

SVR algorithm. We are careful to use the same algorithm parameters for online and batch

SVR, but since our purpose is to compare computational performance, we did not attempt

to optimize these parameters for each data set. In these experiments, the kernel function is

a gaussian radial basis function,
2

exp()i j− −X X , the regularization coefficient C and

the insensitivity parameter ε in (2) are set to 10 and 0.1 respectively, and the embedding

dimension, B, of the training , is 5. Also, we scale all the time-series to [-1,1]. ,O BA

Three widely used benchmark time-series are employed in both experiments: (a) the

Santa Fe Institute Competition time series A (Weigend et al. 1994), (b) the Mackey-Glass

equation with τ=17 (Mackey et al. 1977), and (c) the yearly average sunspot numbers

recorded from 1700 to 1995. Some basic information about these time-series is listed in

Table 1. The SV Ratio is the number of support vectors divided by the number of

training samples. This is based on a prediction of the last data point using all previous

data for training. In general, a higher SV ratio suggests that the underlying problem is

harder (Vapnik 1998).

 # Data Points SV Ratio
Santa Fe Institute 1000 4.52%
Mackey-Glass 1500 1.54%
Yearly Sunspot 292 41.81%

Table 1. Information Regarding Experimental Time Series

The first experiment demonstrates that using a fixed predictor produces less accurate

predictions than using a predictor that is updated as new data becomes available. Two

measurements are used to quantify the prediction performance: mean squared error

(MSE), and mean absolute error (MAE). The predictors are initially trained on the first

half of the data in the time-series. In the fixed case, the same predictor is used to predict

the second half of the time-series. In the online case, the predictor is updated whenever a

new data point is available. The performance measurements for both cases are calculated

from the prediction and actual value of the second half data points in the time-series. As

shown in Table 2, the online predictor outperforms the fixed predictor. We also note that

the errors for the three time-series in Table 2 coincide with the estimated prediction

difficulty in Table 1 based on SV Ratio.

 MSE MAE

Online 0.0072 0.0588 Santa Fe
Institute Fixed 0.0097 0.0665

Online 0.0034 0.0506 Mackey-
Glass Fixed 0.0036 0.0522

Online 0.0263 0.1204 Yearly
Sunspot Fixed 0.0369 0.1365

Table 2. Performance Comparison For Online and Fixed Predictors

The second experiment illustrates that AOSVR is more efficient than a batch

implementation in the online prediction scenario. For each benchmark time-series, an

initial SVR predictor is trained on the first 20% of the data points using a batch SVR

algorithm. Afterwards, both AOSVR and batch SVR algorithms are employed to work in

the online prediction mode for the remaining 80% of the data points in the time-series.

AOSVR and the batch SVR algorithm produce exactly the same prediction errors in this

experiment, so the comparison is only of prediction speed. The experimental results of

the three time-series are presented in Figures 2, 3, and 4 respectively. The x-axis of these

plots is the number of data points, to which the online prediction model is applied.

Figure 2. Log and linear plots of prediction time of SFI time series

Figure 3. Log and linear plots of prediction time of Mackey-Glass time series

Figure 4. Log and linear plots of prediction time of yearly sunspot time series

These experimental results demonstrate that AOSVR algorithm is generally much

faster than the batch SVR algorithm when applied to online prediction. This is because

the batch SVR algorithm must train a new classifier from scratch every time a new point

is added. Comparison of Figures 3 and 4 furthermore suggests that more speed

improvement is achieved on the sunspot data than on the Mackey-Glass. We speculate

that this is because the sunspot problem is “harder” than the Mackey-Glass – it has a

higher support vector ratio – and that the performance of the AOSVR algorithm is less

sensitive to problem difficulty.

To test this hypothesis, we compared the performance of AOSVR to batch SVR on a

single dataset (the sunspots) whose difficulty was adjusted by changing the value of ε. A

smaller ε leads to a higher support vector ratio and a more difficult problem. Both the

AOSVR and batch SVR algorithms were employed for online prediction of the full time-

series. The overall prediction times are plotted against ε in Figure 5. Where AOSVR

performance varied by a factor of about ten over the range of ε, the batch SVR

performance varied by a factor of almost 200.

Figure 5. Log and linear plots of prediction time of yearly sunspot time series

5.1.2. Limited-Memory Version of the Online Time-series Prediction Scenario

One problem with online time-series prediction in general is the longer the prediction

goes on, the bigger the training set will become, and the more SVs will be involved

in SVR predictor (Kimeldorf et al. 1971). A complicated SVR predictor imposes both

memory and computation stress on the prediction system. One way to deal with this

problem is to impose a “forgetting” time W. When training set grows to this

maximum W, then the decremental algorithm of AOSVR will be used to remove the

oldest sample before the next new sample is added to the training set.

,O BA

,O BA

We note that this variant of the online prediction scenario is also potentially suitable

for non-stationary time-series, as it can be updated in real-time to fit the most recent

behavior of the time-series. More rigorous investigation in this direction will be a future

effort.

5.2. Leave-One-Out Cross-validation

Cross-validation is a useful tool for assessing the generalization ability of a machine-

learning algorithm. The idea is to train on one subset of the data, and then to test the

accuracy of the predictor on a separate disjoint subset. In leave-one-out cross-validation

(LOOCV), only a single sample is used for testing, and all the rest are used for training.

Generally, this is repeated for every sample in the dataset. When the batch SVR is

employed, LOOCV can be very expensive, since a full retraining is done for each sample.

One compromise approach is to approximate LOOCV by estimating some related but less

computation-demanding factors, such as the Xi-Alpha Bound (Joachims 2000), and

Approximate Span Bound (Vapnik et al. 1999). Although (Lee et al. 2001) proposed a

numerical solution to reduce the computation for directly implementing LOOCV, the

amount of computation required is still considerable. Also, the accuracy of the LOOCV

result obtained using this method can be potentially compromised due to the special

parameter set employed by the method.

The decremental algorithm of AOSVR provides us with an efficient implementation

of LOOCV for SVR:

(1) Given a dataset D, construct the SVR function f(x) from the whole dataset D

using batch SVR learning algorithm;

(2) For each non-support vector xi in the dataset D, calculate error ei corresponding

to xi as: ei = yi-f (xi), where yi is the target value corresponding to xi;

(3) For each support vector xi involved in the SVR function f(x),

a. Unlearn xi from the SVR function f(x) using the decremental algorithm to

obtain the SVR function fi(x) which would be constructed from the dataset

Di=D-{xi};

b. Calculate error ei corresponding to support vector xi as: ei = yi-fi(xi), where yi

is the target value corresponding to xi.

(4) Knowing the error for each sample xi in D, it is possible to construct a variety of

overall measures; a simple choice is the MSE:

21()
N

LOOCV i
i

MSE e
N

= ∑D (28)

where N is number of samples in dataset D. Other choices of error metric, such

as MAE, can be obtained just by altering (28) appropriately.

5.2.1. Experiment

The algorithm parameters in this experiment are set the same as those in the

experiments in Subsection 5.1.1. Two famous regression datasets, the auto-mpg and

Boston housing datasets, are chosen from the UCI machine-learning repository. Some

basic information of these datasets is listed in Table 3.

 # Attributes # Samples SV Ratio

Auto-MPG 7 392 41.07%
Boston Housing 13 506 36.36%

Table 3. Information Regarding Experimental Regression Datasets

The experimental results of both datasets are presented in Figure 6. The x-axis is the

size of the training set, upon which the LOOCV is implemented. These plots show that

AOSVR-based LOOCV is much faster than its batch SVR counterpart when the training

set is relatively large.

Figure 6. Linear plots of LOOCV time of Auto-MPG and Boston Housing dataset

6. Conclusions

We have developed and implemented an accurate online support vector regression

(AOSVR) algorithm that permits efficient retraining when a new sample is added to, or

when an existing sample is removed from, the training set. AOSVR is applied to online

time-series prediction and to leave-one-out cross-validation, and the experimental results

demonstrate that the AOSVR algorithm is more efficient than the conventional batch

SVR in these scenarios. Moreover, AOSVR appears less sensitive than batch SVR to the

difficulty of the underlying problem.

Appendix

Pseudo-code for Incrementing AOSVR with a New Data Sample

Inputs:

¾ Training set T y {(,), 1... }i i i= =x l

l¾ Coefficients { , and bias b , 1... }i iθ =

¾ Partition of samples into sets S, E, and R

¾ Matrix R defined in (23)

¾ New sample (,)c cyx

Outputs:

¾ Updated coefficients { and bias b , 1... 1}i i lθ = +

¾ Updated Matrix R

¾ Updated partition of samples into sets S, E, and R

AOSVR Incremental Algorithm:

• Initialize 0cθ =

• Compute ()c i ic
i E S

f Q bθ
∈ ∪

= +∑x

• Compute () ()c ch f= −x x cy

• If ()ch ε≤x , then assign to R, and terminate. cx

• Let q s be the sign that ∆ will take (())cign h= − x cθ

• Do until the new sample meets the KKT condition cx

o Update β,γ according to (19) and (20b)

o Start bookkeeping procedure:

 Check the new sample , cx

- 1 (()) /c cL h qε cγ= − −x (Case 1)

- (Case 2) 2cL qC θ= − c

 Check each sample x in the set S (Case 3) i

- If q 0iβ > and C , 0iθ> ≥ () /S
i iL C θ iβ= −

- If q 0iβ > and 0 , i Cθ> ≥ − /S
i iL θ iβ= −

- If q 0iβ < and C , 0iθ≥ > /S
i iL θ iβ= −

- If q 0iβ < and 0 ,i Cθ≥ > − ()S
i iL C θ / iβ= − −

Check each sample in the set E (Case 4) ix

- (() ()) /E
i i iL h sign q iβ ε β= − −x

Check each sample in the set R (Case 5) ix

- i(() ()) /R
i i iL h sign qβ ε β= − +x

Set 1 2min(, , , ,)S E
c c cq L Lθ∆ = L L LR ,

 where { , }S S
iL i S= ∈L , { , }E E

iL i E= ∈L , and { ,R R
i }L i R= ∈L .

Let Flag be the case number that determines ∆ . θ

Let x be the particular sample in T that determines . I cθ∆

o End Bookkeeping Procedure.

o Update , b, and according to (18) cθ ,i i Sθ ∈

o Update according to (20) (),ih i E∈ ∪x R

o Switch Flag

 (Flag = 1):

 Add new sample to set S; update matrix R according to (25) cx

 (Flag = 2):

 Add new sample to set E cx

 (Flag = 3):

 If , move to set R; update R according to (24) 0Iθ = Ix

 If I Cθ = , move to set E; update R according to (24) Ix

 (Flag = 4):

 Move to set S; update R according to (25) Ix

 (Flag = 5):

 Move to set S; update R according to (25) Ix

o End Switch Flag

o If Flag ≤ 2, terminate; otherwise continue the Do-Loop.

• Terminate incremental algorithm; ready for the next sample.

Acknowledgements

We would like to thank Professor Chih-Jen Lin in National University of Taiwan for

his suggestion on some implementation issues. This work is supported by the NASA

project NRA-00-01-AISR-088 and by the Los Alamos Laboratory Directed Research and

Development (LDRD) program.

References

Cauwenberghs, G., and T. Poggio (2001). Incremental and Decremental Support Vector

Machine Learning, in: T. K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in

Neural Information Processing Systems 13, Cambridge, MA, MIT Press, 409-415.

Chang, C-C, and C-J Lin (2001). LIBSVM: a library for support vector machines,

Software available at http://www.csie.ntu.edu.tw/ ~cjlin/libsvm.

Chang, C.-C., and C.-J. Lin (2002). Training ν-support vector Regression: Theory and

Algorithms, Neural Computation, Vol.14(8), 1959-1977.

Csato, L., and M. Opper (2001). Sparse Representation for Gaussian Process Models, in:

T. K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in Neural Information

Processing Systems 13, Cambridge, MA, MIT Press, 444-450.

Fernández, R.(1999). "Predicting Time Series with a Local Support Vector Regression

Machine," Advanced Course on Artificial Intelligence 1999 (ACAI '99), July 14,

Chania, Greece.

Friedel, R.H, G. D. Reeves, T. Obara (2002). "Relativistic electron dynamics in the inner

magnetosphere - a Review", Journal of Atmospheric and Solar-Terrestrial Physics

64, 265-282.

Gentile, C. (2001). A New Approximate Maximal Margin Classification Algorithm,

Journal of Machine Learning Research, 2, 213-242.

Graepel, T. R. Herbrich, and R. C. Williamson (2001). From Margin To Sparsity, in: T.

K. Leen, T. G. Dietterich, and V. Tresp, ed., Advances in Neural Information

Processing Systems 13, Cambridge, MA, MIT Press, 210-216.

Gunn, S. (1998). Matlab SVM Toolbox, Software package is available at

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

Herbster, M. (2001). Learning Additive Models Online with Fast Evaluating Kernels, in:

Proceedings of 14th Annual Conference on Computational Learning Theory (COLT),

Springer, 444-460.

Joachims, T. (2000). Estimating the Generalization Performance of a SVM Efficiently,

in: Proceedings of the International Conference on Machine Learning, Morgan

Kaufman.

Kimeldorf, G. S., and G. Wahba (1971). Some Results on Tchebycheffian Spline

Functions, Journal of Mathematical Analysis and Applications, 33, 82-95.

Kivinen, J., A. J. Smola, and R. C. Willianmson (2002). Online Learning With Kernels,

in: T. G. Dietterich, S. Becker, and Z. Ghahramani, ed., Advances in Neural

Information Processing Systems 14, Cambridge, MA, MIT Press.

Lee, J-H, and C.-J. Lin (2001). Automatic Model Selection for Support Vector

Machines, Machine Learning.

Li, Y., and P.M. Long (1999). The Relaxed Online Maximum Margin Algorithm, in: S.

A. Solla, T. K. Leen, and K.-R. Müller, ed., Advances in Neural Information

Processing Systems 12, Cambridge, MA, MIT Press, 498-504.

Mackey, M.C., and L. Glass (1977). Science, 197, 287-289.

Müller, K.R., A.J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik

(1997). Prediction Time Series with Support Vector Machines, in: Proceedings of

International Conference on Artificial Neural Networks, Lausanne, Switzerland.

Ralaivola, L., and F. d'Alche-Buc (2001). Incremental Support Vector Machine Learning:

a Local Approach, in: Proceedings of International Conference on Artificial Neural

Networks, Aug. 21-25, Vienna, Austria.

Smola, A. J., and B. Schölkopf (1998). A Tutorial on Support Vector Regression,

NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University

of London, UK.

Syed, N. A., H. Liu, and K.K. Sung (1999). Incremental Learning With Support Vector

Machines, in: Proceeding of International Joint Conference on Artificial Intelligence.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and

review, International Journal of Forecasting,16, 437-450.

Tay, F. E. H., and L. Cao (2001). Application of Support Vector Machines in Financial

Time Series Forcasting, Omega, 29, 309-317.

Vapnik, V. (1998). Statistical Learning Theory, Wiley, New York.

Vapnik, V., and O. Chapelle (1999). Bounds on error expectation for support vector

machine, in: A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans, Ed., Advances

in Large Margin Classifiers, Cambridge, MA, MIT Press.

Weigend, A. S., and N. A. Gershenfeld (1994). Time-series Prediction: Forcasting the

future and Understanding the Past, Addison-Wesley.

	Accurate Online Support Vector Regression
	Junshui Ma, James Theiler, and Simon Perkins
	MS-D436, NIS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

	2. Support Vector Regression and The Karush-Kuhn-Tucker conditions
	3.4. Initialization of the Incremental Algorithm
	4. Decremental Algorithm
	SV Ratio
	Online
	Pseudo-code for Incrementing AOSVR with a New Data Sample

	AOSVR Incremental Algorithm:
	
	
	
	Acknowledgements

